skip to main content


Search for: All records

Creators/Authors contains: "Aguirre, Alejandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or synchronizing the sampling statements of the two programs which is not always possible.

    In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relation to reason about contextual refinement and equivalence of higher-order programs written in a rich language with a probabilistic choice operator, higher-order local state, and impredicative polymorphism. Finally, we demonstrate our approach on a number of case studies.

    All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework. 

    more » « less
    Free, publicly-accessible full text available January 5, 2025
  2. null (Ed.)
    Sensitivity properties describe how changes to the input of a program affect the output, typically by upper bounding the distance between the outputs of two runs by a monotone function of the distance between the corresponding inputs. When programs are probabilistic, the distance between outputs is a distance between distributions. The Kantorovich lifting provides a general way of defining a distance between distributions by lifting the distance of the underlying sample space; by choosing an appropriate distance on the base space, one can recover other usual probabilistic distances, such as the Total Variation distance. We develop a relational pre-expectation calculus to upper bound the Kantorovich distance between two executions of a probabilistic program. We illustrate our methods by proving algorithmic stability of a machine learning algorithm, convergence of a reinforcement learning algorithm, and fast mixing for card shuffling algorithms. We also consider some extensions: using our calculus to show convergence of Markov chains to the uniform distribution over states and an asynchronous extension to reason about pairs of program executions with different control flow. 
    more » « less
  3. Adversarial computations are a widely studied class of computations where resource-bounded probabilistic adversaries have access to oracles, i.e., probabilistic procedures with private state. These computations arise routinely in several domains, including security, privacy and machine learning. In this paper, we develop program logics for reasoning about adversarial computations in a higher-order setting. Our logics are built on top of a simply typed λ-calculus extended with a graded monad for probabilities and state. The grading is used to model and restrict the memory footprint and the cost (in terms of oracle calls) of computations. Under this view, an adversary is a higher-order expression that expects as arguments the code of its oracles. We develop unary program logics for reasoning about error probabilities and expected values, and a relational logic for reasoning about coupling-based properties. All logics feature rules for adversarial computations, and yield guarantees that are valid for all adversaries that satisfy a fixed resource policy. We prove the soundness of the logics in the category of quasi-Borel spaces, using a general notion of graded predicate liftings, and we use logical relations over graded predicate liftings to establish the soundness of proof rules for adversaries. We illustrate the working of our logics with simple but illustrative examples. 
    more » « less